Semester I Course Name: Classical Mechanics Course Code: PP2011

No. of hours per week	No. of credits	Total No. of hours	Marks
6	4	90	100

Objectives

- 1. To have in depth knowledge in classical mechanics.
- 2. To enable students to develop skills in formulating and solving physics problems.
- 3. To study the kinematics of the rigid body through Euler equation.
- 4. To get knowledge in central force field and relativity.

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	understand the basic mechanical concepts related to single and system of particles.	PSO - 1	U
CO - 2	apply various mechanical principles to find solution for physical problems.	PSO - 4	Ap
CO - 3	solve the equations of motion using Lagrangian, Hamilton and Hamilton-Jacobi equations.	PSO - 6	С
CO - 4	explain the origin of coriolis and centrifugal terms in the equation of motion in a rotating frame.	PSO - 1	R
CO - 5	understand and develop a scientific knowledge in central force problems and relativity	PSO - 7	U

Teaching Plan

Total contact hours: 90 (Including lectures, assignments and Tests)

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Lagrangian	Formulation				
	1	Lagrangian formulation: System of particles - Constraints and degrees of freedom-	4	To understand the basic concepts of system of particles and	Illustration, Theoretical formulation, Lecture discussion	Evaluation through:

		Generalized coordinates, Force and Energy		generalized coordinates		multiple choice questions
	2	Conservation laws - Conservations of linear and angular momenta - Symmetric properties – Homogeneity and isotropy	4	To be able to understand the concept of conservation laws, homogeneity and isotropy	Theoretical formulation, Illustration, Lecture discussion	Quiz, short questions Problem solving
	3	D'Alemberts principle of virtual work - Lagrange's equation of motion - non holonomic	3	To formulate Lagrange's equation of motion using D'Alembert' s principle	Theoretical formulation, Illustration, Lecture discussion, PPT	Formative assessment
	4	systems velocity dependent potential - Dissipative force - Newtonian and Lagrangian	4	To understand the Newtonian and Lagrangian formalism	Illustration, Theoretical formulation, Lecture discussion	Deriving theoretical formulas
		Formalism				Short test
II	Hamilton's	Equation and Ca	nonical Trar	sformation		
	1	Calculus of variation - Principle of least action - Hamilton's principle - Hamilton's function	4	To formulate Hamilton's function using Hamilton's principle	Illustration, PPT, theoretical formulation	Evaluation through: multiple choice questions
	2	Lagrange's equation from Hamilton's principle - Hamilton's	3	To derive Lagrange's equation from	Illustration, PPT, theoretical formulation	Quiz, short questions

		principle for non holonomic		Hamilton's principle		Problem
		system				solving
	3	Variational principle - Hamilton's equations from variational principle - Legendre transformatio n and Hamilton's equation of motion	4	To understand the concept of variational principle and derive Hamilton's equation from variational principle	Lecture discussion, Illustration, PPT, theoretical formulation	Formative assessment
	4	Canonical transformatio ns- Hamilton's canonical equations - Generating functions- Examples - Poisson brackets and its properties.	4	To understand the concept of canonical transformatio n and poisson bracket	Illustration, Lecture discussion, theoretical formulation	Deriving theoretical formulas Short test
III	Hamilton-J	acobi Theory a	nd Small Os	scillations		
	1	Hamilton- Jacobi equation for Hamilton's principal function - Example: Harmonic oscillator problem	4	To derive the Hamilton- Jacobi equation for Hamilton's principal function and to solve the Harmonic oscillator problem.	Illustration, theoretical formulation , Lecture discussion	Evaluation through: multiple choice questions Quiz, short questions
	2	Hamilton's characteristic function -	3	To formulate the Hamilton's	PPT, theoretical formulation	440500005

	2	Action - Angle variable		characteristic function and explain the Action - Angle variable	111	Problem solving
	3	Application to Kepler problem in action angle variables. Eigen value equation	4	To analyze the application to Kepler problem in action angle variables; To solve Eigen value equation.	Illustration, theoretical formulation , Lecture discussion	Formative assessment
	4	Normal coordinates - Normal frequencies of vibration – Free	4	To discuss the Normal coordinates and Normal frequencies of vibration	Illustration, PPT, theoretical formulation	Deriving theoretical formulas
		Vibrations of linear tri atomic molecule.		and to derive the normal frequencies of free vibrations of linear tri atomic molecule.		Short te st
IV	Kinematics	of Rigid Body		molecule.		
	1	Independent coordinates of rigid body - Orthogonal transformatio n - Properties of transformatio n matrix	4	To understand the concept of Independent coordinates of rigid body. To derive the Orthogonal transformatio n and Properties of transformatio n matrix	Illustration, theoretical formulation , Lecture discussion	Evaluation through: multiple choice questions Quiz, short questions
	2	Euler angle and Euler's theorem - Infinitesimal	3	To derive Euler angle and Euler's theorem. To	Illustration, PPT, theoretical formulation	Problem solving

]
		rotation - Coriolis force		understand the concept		
		Conton's force		the concept of		
				Infinitesimal		
				rotation and		
				Coriolis		Formative
				force.		assessment
	2	A	4	-	Tiles a fina file in	
	3	Angular	4	To derive the	Illustration,	
		momentum		relation	theoretical	
		and kinetic		between the	formulation	
		energy of		angular	, Lecture	
		motion about		momentum	discussion	
		a point -		and kinetic		Deriving
		Moment of		energy of		theoretical
		inertia tensor		motion about		formulas
		- Euler's		a point.		
		equations of		To derive		
		motion		the Moment		
				of inertia		Chart to st
				tensor and		Short test
				Euler's		
				equations of		
				motion.		
	4	Force free	4	To analyze	Illustration,	
		motion of a		the torque	PPT,	
		symmetrical		free motion	theoretical	
		top - Heavy		of a	formulation	
		symmetrical		symmetrical		
		top with one		top and to		
		point fixed		discuss the		
		-		heavy		
				symmetrical		
				top with one		
				point fixed.		
V	Central For	rce Problem and	d Theory of	Relativity		
	1	Reduction to	3	To derive the	Illustration,	Evaluation
		the equivalent		reduced mass	theoretical	through:
		one body		of the	formulation	_
		problem-		equivalent	, Lecture	
		Centre of		one body	discussion	multiple
		mass-		problem. To		choice
		Equation of		understand		questions
		motion and		the concept		questions
		first integral-		of Centre of		
		classification		mass,		
		of orbits		Equation of		Quiz, short
				motion and		questions
				first integral.		
				To discuss		
	1	1	1			

			the		
			classification of orbits based on the		Problem solving
2	Kepler problem: Inverse- Square law of force - Scattering in a central force field - Transformati on of scattering to laboratory coordinates.	4	eccentricity. To derive the Kepler problem: Inverse- Square law of force. To understand the concept of Scattering in a central force field. To transfer the	Illustration, theoretical formulation , Lecture discussion	Formative assessment Deriving theoretical
	Visiol		scattering to laboratory coordinates.		formulas
3	Virial theorem – Lorentz transformatio n – Relativistic Mechanics – Relativistic Lagrangian and Hamiltonian for a particle	4	To understand the Virial theorem. To derive the Lorentz transformatio n. To understand the concepts of Relativistic Mechanics and to derive the Relativistic Lagrangian and Hamiltonian for a particle.	Illustration, PPT, theoretical formulation , Lecture discussion	Short test
4	Mass in Relativity - Mass and energy – Space-time diagram – Momentum vectors	4	To understand the concept of mass in relativity. To discuss the relation between	Illustration, PPT, theoretical formulation , Lecture discussion	

Mass and energy; To analyze Space-time diagram and to derive the	
vectors.	

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.

Course Instructors: Dr.M.Priya Dharshini and Ms.S.Virgin Jeba

Semester I Course Name: Mathematical Physics Course Code: PP2012

No. of hours per week	No. of credits	Total No. of hours	Marks
6	4	90	100

Objectives

- **1.** To emphasize the use of mathematical tools like evaluation of definite integrals
- in the field of classical and quantum mechanics.
- 2. To demonstrate competence with a wide variety of mathematical techniques to enhance problem solving skills.

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	apply the various theorems in complex analysis to evaluate definite integrals.	PSO - 4	Е
CO - 2	determine the series solutions and the recurrence relations (Bessel, Legendre and Hermite differential equations) and solve problems associated with them.	PSO - 3	Е
CO - 3	discuss the basic principles and methods used for the analysis of partial differential equations and apply the techniques to related problems.	PSO - 4	С
CO - 4	discuss the concepts of Fourier, Laplace and inverse Laplace transform, tensors, group theory and their properties.	PSO - 5	С
CO - 5	develop expertise in mathematical techniques required in physics and to enhance problem solving skills.	PSO - 6	An

edit:4				s:90 (Incl. Semina		1
Unit	Modul	Topics	Lecture	Learning	Pedagogy	Assesment
	es	-	hours	outcome		/Evaluation
Ι	Complex	Analysis	I			
	1	Functions of Complex variable-	4	To be able to	PPT,	Evaluation
		Analytic functions – Cauchy –		identify the	Theoretical	through:
		Riemann equations in cartesian		analytic	formulation	Online quiz,
		and polar forms – Harmonic		functions by	and Problem	through
		functions - Cauchy's integral		using the	solving	Google
		theorem		Cauchy's		Classroom
				Riemann		
				equations		Assignment
	2	Cauchy's integral formula –	3	To be able to	Analysis and	on Problem
		Taylor's Series – Laurent series		evaluate the	Problem	solving
				integrals	solving	
				using		
				Cauchy's		Short
				formula and		questions
				able to apply		
				the series in		Descriptive
				computational		answers
				science and		
	2		4	approximation	A 1 · 1	_
	3	Cauchy's residue theorem –	4	To be able to	Analysis and	Domessions
		Singular points of an Analytic		apply the	Problem	Formative
		function – Evaluation of		Cauchy's Residue	solving	assessment
		residues - application to evaluation of definite integrals		theorem to		
		evaluation of definite integrais		evaluate the		
		_		definite		
				integrals of		
				analytic		
				functions		
	4	Integration around a unit circle	3	To be able to	Analysis and	-
		–Jordan's Lemma.		apply the	Problem	
				Jordan's	solving	
				lemma to		
				evaluate		
				contour		
				integrals		
Π	Polynon	nials				
	1	Legendre differential equation	4	To acquire	Analysis and	Evaluation
		and Legendre functions –		basic	Problem	through:
		Generating functions		understanding	solving	Online quiz,
		-		of the partial		through
				differential		Google
				equations and		Classroom
				learn some		

Modules Total Hours:90 (Incl. Seminar & Test)

	2	Rodrigue's formula – Orthogonal Properties – recurrence formula – Bessel differential equation – Bessel functions of I kind – recurrence formula and generating functions –	3	methods for solving them.To accomplish operations with differential equations along with the recurrence formulaeTo execute operations with Bessel differential equations	Analysis and Problem solving Analysis, Problem solving and comparative study	Assignments on Problem solving Short questions Descriptive answers Formative
	4	Hermite differential equations and Hermite polynomials - Generating functions & recurrence formula.	3	To carry out operations with Hermite differential equations along with the recurrence formulae	Analysis, Problem solving and comparative study	assessment
III	Differen	tial and Partial Differential equa	tions			
	1	Homogeneous linear equations of second order with constant coefficients and their solutions	3	To be able to solve second order Homogenous differential equations	Analysis and Problem solving	Evaluation through: Online quiz, through Google Classroom
	2	Ordinary second order differential with variable coefficients and their solution by power series and Frobenius methods	4	To be able to apply the power series and Frobenius methods to evaluate the solution of second order differential equations	Analysis and Problem solving	Assignments on Problem solving Short questions Descriptive
	3	Solution of Laplace equation in Cartesian coordinates- Solution of heat flow equations	3	To be able to solve boundary value problems occur in steady state temperatures and of hydrodynamics	Analysis and Problem solving	answers Formative assessment
	4	Method of separation of variables – variable linear flow – One and two dimensional heat flow.	4	To be able to solve problems for heat flow	Analysis and Problem solving	

				equations in different		
				dimensions		
				under certain		
				boundary		
				conditions		
IV	Tensors,	Fourier and Laplace transforms				
	1	Contravarient and Covarient Tensors - Addition and Subtraction – Outer product - inner product of tensors	3	To be able to solve mathematical problems involving	Analysis and Problem solving	Evaluation through: Online quiz, through Google
				tensors		Classroom
	2	Contraction of a tensor - Symmetric and anti-symmetric tensors – The Kronecker delta	3	To be equipped to use tensor algebra as a tool in the field of applied sciences	Analysis and Problem solving	Assignments on Problem solving
	3	Fourier transform- properties of Fourier transform - Fourier transform of a derivative	4	To be able to understand and apply the concept of Fourier transform to waveforms and spectra.	Analysis and Problem solving	Short questions Descriptive answers
	4	Laplace transform- properties of Laplace transform- Inverse Laplace Transform.	4	To be able to use the Laplace transform equations for solving boundary value problems by directly changing the ordinary differential equations into algebraic equations.	Analysis and Problem solving	Formative assessment
V	Group t					
	1	Group postulates – Abelian group – Cyclic group – Group multiplication table – Rearrangement theorem – Subgroups	3	To understand the mathematics of group theory	Descriptive lecture, Analysis and Problem solving	Evaluation through: Online quiz, through Google
	2	Isomorphism and Homomorphism – Symmetry elements and symmetry operations	4 10	To understand the symmetry and point group of molecules	Descriptive lecture, Analysis and Problem solving	Classroom Assignments on Problem solving

3	Reducible and irreducible representations	3	To generate a representation and to reduce it to its irreducible representation	Descriptive lecture Analysis and Problem solving	Short questions
4	The great orthogonality theorem - Character table for C_{2V} & C_{3V} point groups.	4	To determine the irreducibility of a reducible representation	Descriptive lecture Analysis and Problem solving	Descriptive answers Formative assessment

PO- Program outcome; LO – Learning outcome;

Cognitive Level R – Remember; U – Understand; Ap- Apply, An- Analyze; E-Evaluate; C- Create

Semester: I

Course Name: QUANTUM MECHANICS -I Course code: PP2013

No. of hours per week	No. of credits	Total No. of hours	Marks
6	5	90	100

Objective

To help the students to acquire understanding of the fundamental concepts and mathematical tools necessary to solve the wave equations.

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	summarize the concept of wave function and the postulates of quantum mechanics.	PSO-1	U
CO - 2	formulate time dependent and time independent equation and solve them for simple potentials.	PSO-4	С
CO - 3	evaluate the eigen values and eigen function spin and total angular momenta and determine the matrices.	PSO-4	Е
CO - 4	analyze the principles of quantum theory, equation of motion, scattering theory and angular momentum.	PSO-4	An

Modules

Credit:5

Total Hours:90 (Incl. Seminar & Test)

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	I Foundations of Wave Mechanics					

		Wave packet – Time dependent Schrödinger equation – Interpretation of the wave function	4	To understand basic concepts of quantum mechanics by deriving group velocity, phase velocity and time dependent Schrodinger equation	PPT, Illustration and theoretical derivation	Evaluation through: Online quiz, Problem solving short questions Descriptive answers
						Formativ e assessme nt
		Admissibility conditions on the wave function – Hermitian operator – Postulates of quantum mechanics	4	To be able tounderstand the wave function and postulates of quantum mechanics	Illustration, Theoretical formulation Problem Solving	
		Simultaneous measurability of observables – General uncertainty relation – Ehrenfest's theorem	4	To analyze observables and their properties	PPT, Theoretical formulation and Problem solving	
II	Eigen St	ates and Many Electron Atoms				
	1	Square-well Potential with Rigid Walls- Square Potential Barrier –Alpha Emision- Time independent Schrodinger equation	3	To understand the basic concepts and features related to Square-well Potential	PPT Illustration, lecture, and Problem solving	Evaluation through: Online quiz, short
	2	Time dependent Schrödinger equation – Stationary states - Eigen functions and eigen values	3	To relate time independent and time dependent Schrodinger equation	Descriptive lecturecompara tive study	questions Descriptive answers Problem solving
	3	Kronig Penny square well periodic potential- Indistinguishable Particles- Particle Exchange Operator	3	Toformulate Kronig Penny square well periodic potential and operators	PPT, Theoretical formulation and Problem solving	Formative assessment

	4	Symmetric and Antisymmetric	3	To understand	Illustration,]
	+	Wave Functions - Pauli	5	Symmetric and	Theoretical	
		Principle – Inclusion of spin		Antisymmetric	formulation	
				Wave	and Problem	
				Functions	solving	
III	Exactly	Soluble Eigen value Problems			U	
	1	One dimensional linear	3	To solve the	Illustration,	Evaluation
		harmonic oscillator – operator		one-	Theoretical	through:
		method - Particle moving in a		dimensional	formulation	Online quiz,
		spherically symmetric potential		linear harmonic	and Problem	
				oscillator	solving	
				problem		short
	2	Spherical harmonics- Radial	2	To formulate	PPT,	questions
		equation- Rigid rotator-		radial equations	Illustration,The oretical	Descriptive
		Hydrogen atom- solution of the		of hydrogen	formulation	answers
		radial equation		atom	and	Assignment
					Problem	on
					solving	applications
	3	Energy eigen values- Radial	3	To understand	Illustration,	
	-	wave functions- Wave	-	the eigen values	Theoretical	Formative
		functions of hydrogen-like atom		and wave	formulation	assessment
				functions	and Problem	
					solving	
	4	Radial Probability density-	4	To formulate	Illustration,	
		Three-Dimensional square-well		three-	Theoretical	
		potential.		Dimensional	formulation	
				square-well	comparative	
				potential.	study	
					and Problem	
IV	Motriy I	Formulation of Quantum Theory	Fauntia	n of Motion & Ar	solving	
1 V	1	Linear vector space- Dirac's	2	To derive	Theoretical	Evaluation
	1	notation-Equation of motions	2	equation of	formulation	through:
		notation Equation of motions		motion using	Tormulation	Online quiz,
				Quantum		omme quiz,
				mechanical		
				concepts		short
	2	Schrodinger, Heisenberg and	2	To compare	Theoretical	questions
		Interaction representation.		representation of	formulation	
		-		equation of		Descriptive
				motion		answers
	3	Angular momentum operators	2	To understand	PPT	
		– Angular momentum		the basic	Illustration,	Problem
		commutation relations – Eigen		concepts and	lecture, and	solving
	1	values and eigen functions of		features related	Problem	
					1 •	F · ·
		L^2 and L_z		to Angular momentum	solving	Formative assessment

	4	$ \begin{array}{c} \mbox{General angular momentum} - \\ \mbox{Eigen values of } J^2 \mbox{ and } J_z \end{array} $	2	To relate angular momentum and general angular	Descriptive lecture comparative	
	5	Angular momentum matrices – Spin angular momentum – Spin vectors for spin-(1/2)	2	momentum To formulate angular momentum	study Theoretical formulation and Problem	
	6	System Addition of angular momentum: Clebsch-Gordon coeffiecients	2	matrices To obtain C-G coefficient from angular momentum	solving Illustration,The oretical formulation and Problem solving	
	7	Stern Gerlach Experiment.	1	To prove concept of spin experimentally	Demonstration	
V	Scatterin	ng theory	1			
	1	Scattering cross-section – Scattering amplitude	1	To understand the basic	PPT Illustration,	
				concepts and features related to scattering	And Descriptive lecture	Evaluation through: Online quiz,
	2	Partial waves – Scattering by a central potential: Asymptotic solution.	3	To understand the concept of partial waves	Descriptive lecture and Theoretical formulation	short questions
	3	Optical theorem- Ramsauer- Townsend effect- Partial wave analysis	2	To apply the concept of partial waves	Descriptive lecture and Theoretical formulation	Descriptive answers
	4	Scattering by an attractive square-well potential – Breit- Wigner Formula - Scattering length - Expression for phase shifts - Integral equation	3	To apply scattering theory to physical problems	Descriptive lecture and Theoretical formulation	Problem Solving
	5	The Born approximation – Scattering by screened coulomb potential – validity of Born approximation	2	To understand Born approximation	Descriptive lecture and Theoretical formulation	Formative assessment

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An- Analyze; E-Evaluate; C- Create

Staff -- in -- charge : Ms. Sonia & Ms. Aji Udhaya

Semester I

Course code: Numerical Methods

Course code: PP2016

No. of hours per week	No. of credits	Total No. of hours	Mar ks
6	4	90	100

Objective

To understand various numerical methods used to solve the

	physical problems.								
СО	Upon completion of this course the students will be able to :	PSO addressed	CL						
CO-1	understand the various interpolation methods and finite difference concepts	PSO - 1	U						
CO- 2	analyze the numerical solutions of linear and non linear equations	PSO - 4	An						
CO- 3	utilize various numerical methods for differentiation and integration	PSO - 4	Ар						
CO -4	discuss the concepts of ordinary differential equations	PSO - 5	С						

Modules

Credit:4

Total Hours:90 (Incl. Seminar& Test)

Unit	Sect ion	Topics	Lect ure hour s	Learning outcome	Pedagogy	Assessme nt/Evalua t ion
Ι	Inter	polation				
	1.	Introduction, Polynomial Forms, Linear interpolation.	4	To understand the basic concepts of interpolation	PPT, Illustration and theoretical derivation	Evaluation through: Online quiz,
	2.	Lagrange Interpolation Polynomial, Newton Interpolation Polynomial	4	To be able to solve the problems of Lagrange and Newton Interpolation	Illustration, Theoretical formulation Problem Solving	Problem solving short

	3.	Divided difference table, Interpolation with equidistance points, Spline interpolation	4	To solve the problems of Divided difference table, Interpolation with	PPT, Theoretical formulation and Problem solving	questions Descripti v e answers Formative assessmen t
	D (equidistance points, Spline interpolation		
II	1	s Of Nonlinear Equations 15 Hours Introduction, Methods of Solution, Iterative Methods, Starting and Stopping an Iterative Process, evaluation of Polynomials	3	To understand the basic concepts of Iterative Methods	PPT Illustration, lecture, and Problem solving	Evaluation through: Online quiz, short questions
	2	Bisection method, False Position Method, Newton- Raphson Method	3	To solve various methods like Bisection, False Position and Newton-Raphson Method	Descriptive lecture solving problems	- Descripti v e answers Problem solving
	3	Secant Method, Fixed Point Method	3	To find the roots using Secant and Fixed Point Method	PPT, Theoretical formulation and Problem solving	Formative assessmen t
	4	Determining All Possible Roots.	3	To determine all Possible roots for the Polynomial equation	Illustration, Theoretical formulation and Problem solving	
III	Solut	tions of Linear Equations				

	1	15 Hours Need and Scope, Existence of Solutions, Solution by Elimination,	3	To understand the basics of elimination method	Illustration, Theoretical formulation and Problem solving	Evaluation through: Online quiz, short questions
	2	Basic Gauss Elimination Method, Gauss Elimination with Pivoting, Gauss- Jordan Method	2	To solve the problems of Gauss Elimination, Gauss Elimination with Pivoting and Gauss- Jordan Method	PPT, Illustration, Theoretical formulation and Problem solving	Descripti v e answers Assignme
	3	Triangular Factorization Methods, Round-off Errors and Refinement, Ill- Conditioned Systems,	3	To understand the Triangular Factorization Methods and Round-off Errors	Illustration, Theoretical formulation and Problem solving	n t on applicatio ns Formative
	4	Matrix Inversion Method, Jacobi Iteration Method, Gauss Seidel Method.	4	To solve the problems of Matrix Inversion Method, Jacobi Iteration Method and Gauss Seidel Method.	Illustration, Theoretical formulation comparative study and Problem solving	assessmen t
IV	Num	erical Differentiation and Int	egratio	n		<u>I</u>
	1	Numerical Differentiaton: Need and Scope, differentiatig continuous functions,	4	To understand the basic concepts of Numerical Differentiation	Theoretical formulation and Problem solving	Evaluation through: Online quiz,
						short questions Descripti
	2	Differentiating tabulated functions, Difference tables, Numerical Integration.	4	To solve problems for Difference tables and study the basics of Numerical Integration.	Theoretical formulation and Problem solving	v e answers Problem solving

	3	Trapezoidal Rule, Simpson's 1/3 Rule, Simpson's 3/8 Rule, Higher Order Rules.	4	To solve problems using Trapezoidal Rule, Simpson's 1/3 Rule and Simpson's 3/8 Rule	PPT Illustration, lecture, and Problem solving	Formative assessmen t
V	Num	erical Solutions of Ordinary	Differe			
	1	15 Hours Need and Scope, Tailor Series Method – Improving accuracy,	3	To understand the basic concepts and features of Tailor Series	PPT Illustration, And problem solving	Evaluation through: Online quiz, short
	2	Picard's method, Euler's Method – accuracy of Euler's method, .	3	To solve differential Equations using Picard's, Euler's Method , Euler's method,	problem solving	questions Descripti v e
	3	Heun's Method – Error analysis, Polygon Method,	3	To apply the concept of Heun's Method, Error analysis, Polygon Method to solve the equations	PPT Illustration, And problem solving	ve answers Problem Solving Formative assessmen t
	4	Runge-Kutta Methods- Determination of weights, Fourth order Runge-Kutta methods.	3	To apply Runge- Kutta Methods to solve the problems	PPT Illustration, And problem solving	

PO- Program outcome; LO – Learning outcome; Cognitive Level R – Remember; U – Understand; Ap- Apply, An- Analyze; E-Evaluate; C-Create

Staff-in charge: Ms.Shally & Ms.Lesly

Semester III Core VII: Integrated Electronics Subject Code: PP1731

Number of hours per week	No of credits	Total number of hours	Marks
6	100010100100		100
0	4	90	100

Objectives: 1. To provide knowledge in the basic structure and working concepts of electronic devices.

2.To acquire application skills involving digital integrated circuit.

Course Outcomes					
СО	Upon completion of this course the students will be able to :	PSO addressed	CL		
CO-1	Understand the basic operation ,features and parameters related to diodes,transistor, switching devices and interpret their applications (FET,JFET,D-MOSFET,EMOSFET,SCR,DIAC,TRIAC)	PSO-1	U		
CO- 2	Explain about the internal circuitry and logic behind any digital system (AND,OR,NOT,NAND,NOR,RTL,TTL,I ² L).	PSO-2	U		
CO- 3	Assess the working of combinational circuits.(flipflops, counters)	PSO-3	Е		
CO -4	Design various synchronous and asynchronous sequential circuits.	PSO-6	С		
CO- 5	Understand the characteristics of op-amps and the applications of op-amps	PSO-2	U		
CO -6	Analyse the behaviour f active filters and IC555	PSO-4	С		

Teaching Plan

		1 ea	ching Plan			
	Credit:5		Tota	al Hours: 90 (Incl. Sei	minar & Test)	
Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Devices	and Applications				
	1	FET – Types, Principle and working, Salient features and Important Terms / parameters, Practical JFET and FET applications	4	Understand the concepts and salient features of FET and JFET	Illustration, Descriptive lecture	Evaluation through: quiz, Problem
	2	MOSFET – Types and circuit operation, D-MOSFET	3	Distinguish between MOSFET and D-MOSFET and their working	Illustration, Descriptive lecture	solving short
	3	SCR – Working and Equivalent circuit, SCR as a switch and Application of SCR	3	Understand the working of SCR as a switch.	Illustration, Descriptive lecture of Circuit theory	questions Descriptive answers
	4	Triac - Construction / Operation / Characteristics and Applications, Diac and its Applications	3	Differentiate DIAC and TRIAC their working and applications	Discussion on circuit working differences.	Formative assessment (I)
II	Digital I	ogic circuits and Flip Flops	1			
	1	Digital IC characteristics, Diodes and	4	Identify the use of	PPT	Evaluation

		transistors in logic circuits,		and transistors in logic circuits	Illustration, Descriptive lecture	through: quiz,
	2	DTL type – AND, OR, NAND and NOR, RTL and TTL type NAND, ECL and I ² L circuits	4	Explain about the internal circuitry and working of basic logic circuits	Discussion on circuit working differences.	short questions
	3	Flip flops – NAND Latch, SR, D, JK flip flop	3	Assess the functioning of various flip flops	Descriptive lecture on circuit working differences.	Descriptive answers Assignment
	4	T and JK master – Slave flip flop	2	Understand the working of various flip flops	Discussion on circuit working differences	Formative assessment (I&II)
III	Register	s and Counters				
	1	Shift register, Ring counter , Shift counter (Johnson's counter)	4	Understand the principle and working of registers and counters	Illustration, Descriptive lecture	Evaluation through: quiz,
	2	Asynchronous counter / Ripple counter, Mod counters, 4-bit binary down counters and 4 Bit up/down counters, BCD counter using decoding gates	5	Identify the different construction and circuit design of asynchronous counters	Discussion on circuit working differences. Practical demonstrati on	short questions Descriptive answers
	3	Synchronous counters –Design, Mod 3 counter, Random Sequence generator, Synchronous BCD counter	4	Able to design counters with random counting sequence	Lecture discussion on design techniques of Mod counters	Formative assessment (II)
IV	Op-Am	o Circuits				
	1	Characteristics and parameters, Op- amp comparator, Schmitt Trigger, Inverting and non-inverting amplifier, Voltage follower, summing and difference amplifier, Differentiator and Integrator	4	Understand the basic operations, features and application of OP- amp	PPT Illustration, Descriptive lecture. Practical demonstrati on	Evaluation through: quiz, Problem solving
	2	Current to voltage converter, Solution of Differential equation and simultaneous equation using op-amp, Instrumentation Amplifier using Transducer Bridge	4	Assess the instrumental Applications of OP-amp	Group design of instrumentat ion amplifiers	short questions Descriptive answers
	3	Temperature indicator and controller, Light intensity meter, Measurement	3	Apply the OP- amp for different	Discussion on design	Assignment

	4	of flow and thermal conductivity, Analog weight scale Differential input and output amplifier, Voltage to current converter, Very high impedence circuit , sample and hold system	3	applications Identify the use of OP-amp in various circuits .	techniques of Mod counters Discussion on circuit working differences	Formative assessment (II&III)
V	Filter ci	rcuits and 555 Timer				
	1	Active filters, First and second order Low pass Butterworth filter, Filter design, frequency scaling	3	Understand the principle of filter design	PPT Illustration, Descriptive lecture	Evaluation through: quiz,
	2	First order and Second order High pass Butterworth filter	3	Differentiate between the working of first and second order filter	Descriptive lecture with PPT Illustration,	short questions Descriptive
	3	Higher order filters, Band pass filter, Wide and Narrow Band Rejection filter,Wide and Narrow Band Rejection filter, All pass Filter	4	Extend the design and application of various types of filters.	Descriptive lecture	answers
	4	555 Timer - internal structure, Schmitt Trigger, Astable multivibrators, Monostable multivibrators	4	Understand the working and applications of 555 timer	Practical demonstrati on Descriptive lecture with PPT Illustration,	Formative assessment (III)

Course Instructor :Dr. V.Shally

Head of the Department:Dr.S.Mary Delphine

Semester III
Core VIII: Microprocessor and Microcontroller
Subject Code: PP1732

548,000 222.02						
No of hours per week	No of credits	Total no of hours	Marks			
6	4	90	100			

Objectives: 1. To provide knowledge on the hardware, programming and applications of 8085 microprocessor and 8051 microcontroller.

2. To gain hands on experience in interfacing peripherals to the

microprocessor.

Course Outcomes

СО	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	Explain the operation of various components of the microprocessor 8085 and Pheripheral I/O, memory mapped I/O.	PSO-1	А
CO-2	Explain the various addressing modes and the instruction set of 8085 microprocessor	PSO-1	А

CO-3	Develop skill in writing programs for 8085 microprocessor	PSO-2	Ар
CO-4	Understand the various data transfer schemes, interrupts and	PSO-1	U
	interfacing circuits of 8085 microprocessor		
CO-5	Experiment with the common applications of microprocessor	PSO-4	А
	(Display of decimal numbers, Generation of waves forms,		
	Microprocessor based traffic control, Measurement of frequency,		
	resistance, temperature, display of speed of a motor)		
CO-6	Explain the architecture of 8051 microcontroller and some	PSO-1	U
	applications		

Teaching Plan Total Hours:90 (Incl. Seminar & Test)

	Credit:4		Tot	al Hours:90 (Incl. Semi	nar & Test)	
Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Evolution	and architecture of microprocesso	r 8085			
	1	Evolution of microprocessors – Intel 8085 microprocessor – Architecture – ALU – Timing and control unit	4	To be able to describe the architecture of 8085 microprocessor	PPT Illustration, Descriptive lecture	Evaluation through: quiz,
	2	Registers (general purpose & special purpose registers) – Flags – Data and address bus – Pin configuration – 8085-based microcomputer	4	To explain the organization of 8085 microprocessor	PPT Illustration, Descriptive lecture, comparative study	short questions Descriptive answers
	3	8085 machine cycles and bus timings	4	To understand the working of each instruction and its execution	Descriptive lecture, comparative study	Formative assessment(I)
	4	Memory interfacing – Peripheral I/O – Memory mapped I/O	3	To realize the interfacing of memory & various I/O devices with 8085 microprocessor	Descriptive lecture and group discussion	
II	Introduct	tion to assembly language programm	ning			
	1	Intel 8085 instructions – Opcode and operands – Instruction word size	4	To understand the instruction set of 8085 microprocessor	Descriptive lecture, comparative study	Evaluation through: quiz,
	2	Instruction set of Intel 8085 – Instruction and data formats	4	To classify the instruction set of 8085 microprocessor	Descriptive lecture	short questions Descriptive
	3	Addressing modes – Stack – Subroutines	3	To identify the addressing mode of an instruction	PPT Illustration, Descriptive lecture, comparative study	answers Formative assessment(I& II)
	4	Examples of assembly language	4	To distinguish the use	Descriptive	

	Γ	11 ¹ 1	1	- C 1: C	1	
		programs: addition of two 8-bit numbers – 8-bit subtraction – One's compliment – Two's compliment – Square of a number – Largest number in an array – Ascending or descending order – Smallest number in an array		of different instructions and apply it in assembly language programming.	lecture and comparative study	
III		transfer schemes – Interrupts – Inte oprocessor based data acquisition sy				
	1	Address space partitioning – Memory and I/O interfacing – Data transfer schemes – Programmed data transfer	4	To understand the various data transfer schemes of 8085 microprocessor	Descriptive lecture	Evaluation through: quiz,
		schemes, DMA data transfer scheme				short questions
	2	 Interrupts of Intel 8085 – Hardware and software interrupts Interrupt call locations – RST 7.5, 6.5 and 5.5 – Interfacing I/O devices – I/O ports: non programmable I/O port Intel 8212, Programmable Peripheral Interface (PPI) Intel 8255 	4	To understand the operation of Programmable Interface devices	Descriptive lecture	Descriptive answers Formative assessment(II)
	3	Analog to digital converter – Sample and hold circuit – Analog multiplexer – ADC 0800 – Interfacing of A/D converter ADC 0800	4	To be able to describe the interfacing of A/D converter	PPT Illustration, Descriptive lecture	
	4	Interfacing of ADC 0800 and analog multiplexer AM 3705 – Interfacing of ADC 0800, analog multiplexer and sample and hold circuit	3	To realize the programming & interfacing of various devices with 8085 microprocessor	PPT Illustration, Descriptive lecture	
IV	Micropro	ocessor applications				
	1	Delay subroutine – 7 Segment LED display	4	To demonstrate the assembly language programming for delays and subroutines	Descriptive lecture	Evaluation through: quiz, short questions
	2	Display of decimal numbers – Display of alphanumeric characters – Formation of codes for alphanumeric characters	3	To demonstrate the interfacing of display	Descriptive lecture	Descriptive answers Assignment on
	3	Generation of square wave or pulse – 8-bit multiplication – 8-bit division – Measurement of	4	To develop programming skills in assembly language	Descriptive lecture	applications.
		electrical quantities – Frequency				Formative

		measurement – Resistance measurement	4	To be lidere de	Description	assessment(II & III)
	4	Measurement of physical quantities – Temperature measurement and control – Measurement and display of speed of a motor – Microprocessor based traffic control	4	To build up the assembly language programming skills and real time applications of microprocessor	Descriptive lecture	
V	The 8051	Microcontroller				
	1	Inside the 8051 – Introduction to 8051 assembly programming – Assembling and running an 8051 program – The program counter and ROM space in the 8051	5	To understand the basic concepts and architecture of 8051	PPT Illustration, Descriptive lecture	Evaluation through: quiz, short questions
	2	Data types and directives – 8051 Flag bits and the PSW register – 8051 register banks and stack – Pin description of 8051 –	4	To explain the register organization of 8081	PPT Illustration, Descriptive lecture	Descriptive
	3	 I/O programming – Bit Manipulation. Arithmetic Instructions: Addition of unsigned numbers, - Addition of Individual bytes 	4	To develop knowledge about assembly language programs of 8051	Descriptive lecture	Group discussion
	4	Subtraction of unsigned numbers– Unsigned multiplication and division.	2	To build up knowledge about assembly language programs of 8051	Descriptive lecture and comparative study	Formative assessment (III)

Course Instructor : M. Mary Freeda Head of the Department: Dr.S.Mary Delphine

Semester III Elective III (a): Physics of the Cosmos Subject Code: PP1733

No of hours per week	No of credits	Total no of hours	Marks
6	5	90	100

Objectives: 1. The course enables the students to understand and realize the historical evolution of Universe and principles involved in Astrophysics

2. The topics included are Solar system, Comets, Galaxy, Cosmology and Astronomical Instruments which play a key role in the future employability and global progress of students.

Course Outcomes

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO- 1	Perceive the historical evolution of solar system and universe	PSO-3	Е

CO- 2	Describe the principles of physics in the formation of astronomical objects like planets-Satellites - Asteroids and Comets	PSO-1	U
CO- 3	Examine the requirements and limitations of instrumentation for modern astrophysical observations (Optical telescopes and Radio telescopes)	PSO-2	An
CO -4	Explain the basic issues involved in present day astrophysical investigations (Red shift and the expansion of the universe)	PSO-6	U
CO- 5	Analyse the formation of Binary stars, multiple stars, Neutron stars and Black holes	PSO-4	An
CO -6	Interpret the observations of Galaxies, dark matter, quasars and pulsars.	PSO-5	E
CO -7	Distinguish between of some important models of the universe and its observational tests.	PSO-5	An

Teaching Plan Total contact hours: 90 (Including lectures, assignment and tests)

				Lecture	Learning	Pedagogy	Assessment/
Unit	Modu	ıle	Topics	Hours	outcomes		Evaluation
Ι				Solar sy	stem		
	1	sys - Sa As Co bet pla	omponents of the sola stem - The Sun - The Plane Two types of planet tellites teroids and Comets omposition difference tween the Inner and Out anets - Bode's law: The arch for order - Density as	ar 4 et 5 - 4 es er he a	Define the basic Components of the solar system Apply various Inner and Outer planets	Lecture discussion Discussion and PPT Seminar	Evaluation Class test, oral question assignment Formative assessment I
	3		easure of a planet mposition – ge of solar system - Origin solar system - Interstellar oud - Formation of the sola Nebula	of 4 r	Study of solar system	Discussion and PPT	
	4	Ac Fo Fo sta Fo	ondensation in solar Nebula ccretion and Planetesimals rmation of Planets rmation of Moons - Fin ges of Planet formation rmation of Atmospheres eaning up the solar system	- al -	Formation of Planets	Derivation and group discussion	
II	Stars						
	1	E	troduction – Visual Binary Spectroscopic Binary – Eclipsing Binary – Multiple ars – Origin of Binary stars	:	Study on Binary and multiple stars	Derivation discussion	Evaluation Class test, oral question

						Assignment,
	2	Stellar masses and mass	3	Define and	Discussion	seminar
		Luminosity Relation – Mass		derive mass	and PPT	
		transfer in close Binary		Luminosity		Formative
		systems.		Relation		assessment I
	3	Discovery of pulsars –	4	Study on	Derivation	
		Rotating Neutron star model of		Neutron	and group	
		pulsars – Period distribution		stars and	discussion	
		and loss of rotational energy		Black holes	PPT	
					Seminar	
	4	Test of rotating neutron star	4	Neutron star	Discussion	
		model of pulsars Gold's model		and its	and PPT	
		of pulsars, Black holes.		models		
III	1	Discovering Colovies contr	Gala		Derivation	Evoluction
	1	Discovering Galaxies - early observations of Galaxies -	4	Study on galaxies	discussion,P	Evaluation Class test,
		Types of Galaxies -		galaxies	PT	
		Differences in Stellar and Gas			F I	oral question Assignment,
		content of Galaxies				seminar
	2	The cause of Galaxy types -	2	Define and	Derivation	semmar
	-	Galaxy collisions and Mergers	-	derive	and group	Formative
		- Measuring properties of		Galaxy	discussion	assessment II
		Galaxies - Galaxy distances -		types		
		using Cepheid Variables -		- J F		
	3	The Red shift and Hubble Law	5	Define and	Derivation	
		- Measuring the diameter of a		Derive Red	and group	
		Galaxy -Measuring the Mass		shift and	discussion,P	
		of a Galaxy - Dark Matter-		Hubble	PT	
		Quasars as probes of		Law, Dark		
		Intergalactic Space		Matter and		
		~ · · · · ~ ~ ~ .		Quasars		
	4	Gravitational Lenses-Galaxy	4	Define,	Derivation	
		clusters - The local group-Rich		derive and	and group	
		and Poor Galaxy clusters -		apply Gravitationa	discussion,P	
		Super clusters			PT	
				l Lenses and	Seminar	
				Galaxy clusters	Seminar	
IV		<u> </u>	Cosmolo			
	1	Introduction – Red shift and	4	Prove Red	Derivation,	Evaluation
		the expansion of the universe –		shift and the	discussion,P	Class test,
		Matter Density in the universe		expansion of	PT	oral question
		and Declaration parameter		the universe		Assignment,
						seminar
	2	Perfect cosmological principle	4	Define and	Derivation	Formative
		– Fundamental equation of		derive	and group	assessment
		cosmology.		Fundamenta	discussion,	II/III

				l equation of	PPT	
				cosmology		
	3		3	Define and	Derivation	
				Derive	and group	
				Some	discussion	
		The current theories – Some		important		
		important models of the		models of	Seminar	
		universe		the universe		
	4	Observational tests of	4	Define ,	Derivation	
		cosmological models.		derive and	and group	
				apply	discussion	
				cosmologica		
				1 models.		
V		Astrono		struments	·	
	1		4	Study on	Discussion,	Evaluation
				light and	PPT	Class test,
		Light and its properties – Earth		Earth		oral question
		atmosphere and the		atmosphere		Assignment,
		electromagnetic radiation				Seminar
	2	Optical telescopes	3	Define,	discussion,	Formative
				discus and	PPT	assessment III
				sketch		
				Optical	Seminar	
				telescopes		
	3		4	Define,	discussion,	
		Radio telescopes – Hubble		discus and	PPT	
		space telescopes –		sketch		
		Astronomical spectrographs -		Radio		
		Photoelectric photometry		telescopes		
	4	Spectrophotometry – Detectors	4	Define,	discussion,	
		and Image processing.		discus and	PPT	
				sketch		
				Detectors		
				and Image		
				processing.		

Course Instructor: Dr.C .Nirmala Louis

Head of the Department: Dr.S.Mary Delphine